

S

\mathcal{A} ssignment

				Electromagnetic waves
		Basic	Level	
	The speed of electromag	netic wave in vacuum depends	upon the source of radiati	on [Kerala PMT 2004]
	(a) Increases as we mov	ve from γ -rays to radio waves	(b) Decreases as we mov	ve from γ -rays to radio waves
	(c) Is same for all of the	em	(d) None of these	
	Which of the following r	adiations has the least wavele	ngth	[AIEEE 2003]
	(a) γ -rays	(b) β -rays	(c) α -rays	(d) X-rays
	The maximum distance u	pto which TV transmission from	m a TV tower of height <i>h</i> ca	n be received is proportional to
	(a) $h^{1/2}$	(b) <i>h</i>	(c) h	(d) h^2
	In short wave commun	ication, waves of which of t	he following frequencies	will be reflected back by the
	ionospheric layer having	g electron density 10^{11} per m^3		[AIIMS 2003]
	(a) 2.8 <i>MHz</i>	(b) 10 <i>MHz</i>	(c) 12 <i>MHz</i>	(d) 18 <i>MHz</i>
	Which of the following a	are not electromagnetic waves	[A]	IEEE 2002; CBSE PMT/PDT 2003]
	(a) Cosmic rays	(b) Gamma rays	(c) <i>β</i> -rays	(d) X-rays
	Ozone is found in			[DPMT 2002]
	(a) Stratosphere	(b) Ionosphere	(c) Mesosphere	(d) Troposphere
	The electromagnetic wa	ves travel with a velocity	-	[J & K CET 2002]
	(a) Equal to velocity of a light	sound (b) (d) None of these	Equal to velocity of light	t (c) Less than velocity of
	The ozone layer absorbs			[Kerala PET 2002]
	(a) Infrared radiations	(b) Ultraviolet radiations	(c) X-rays	(d) γ -rays
	Electromagnetic radiation	on of highest frequency is	-	[Kerala PMT 2002]
	(a) Infrared radiations	(b) Visible radiation	(c) Radio waves	(d) γ -rays
•	Which of the following s	shows green house effect		[CBSE PMT 2002]
	(a) Ultraviolet rays	(b) Infrared rays	(c) X-rays	(d) None of these
	Which of the following v	waves have the maximum wave	elength	[AFMC 2002]
	(a) X-ravs	(b) I.R. ravs	(c) UV ravs	(d) Radio waves
•	Electromagnetic waves a	are transverse in nature is evid	lent by	[AIEEE 2002]
	(a) Polarization	(b) Interference	(c) Reflection	(d) Diffraction
	If \vec{E} and \vec{B} are the elec	tric and magnetic field vector	s of e.m. waves then the d	irection of propagation of e.m.
-	wave is along the direct	ion of	[(CBSE PMT 1992, 2002; DCE 2002]
	(a) \vec{E}	(b) \vec{B}	(c) $\vec{E} \times \vec{B}$	(d) None of these
•	Biological importance of	Ozone layer is	×-7	[CBSE PM/PD 2001]
	(a) It stops ultraviolet r	avs	(b) Ozone rays reduce g	reen house effect
	(c) Ozone laver reflects	radio waves	(d)	Ozone laver controls
	O_{2}/H_{2} radio in atmosph	here	(4)	ozone nayer controle

Get More Learning Materials Here : 💻

CLICK HERE

172 Electromagnetic Waves

15.	What is ozone hole					ГАБ	MC 2001]		
1.3.	(a) Hole in the ozone lave	r	(b)	Formation of ozone lay	er	[
	(c) Thinning of ozone laye	er in troposphere	(d)	Reduction in ozone thickness in stratosphere					
16.	Which rays are not the por	rtion of electromagnetic spect	rum		[]	Haryana CE	ET 2000]		
	(a) X-rays	(b) Microwaves	(c)	α-rays	(d) Radi	o waves			
17.	Radio wave diffract aroun	d building although light wave	es do	not. The reason is that	radio wa	ves [AN	IU 2000]		
	(a) Travel with speed larg wavelength than light	ger than c		(b)	Have	much	larger		
	(c) Carry news		(d)	Are not electromagneti	c waves				
18.	The frequencies of X-rays,	γ -rays and ultraviolet rays ar	e res	spectively a, b and c. The	en	[CBSE PI	/IT 2000]		
	(a) $a < b, b > c$	(b) $a > b, b > c$	(c)	a > b, b < c	(d) a < b	o, b < c			
1 9.	Radio waves and visible li	ght in vacuum have				[KC	ET 2000]		
	(a) Same velocity but diffe	erent wavelength	(b) Continuous emission spectrum						
	(c) Band absorption spect	rum		(d)	Line emi	ssion spec	trum		
20.	Energy stored in electrom	agnetic oscillations is in the fo	orm	of	[]	Haryana CE	ET 2000]		
	(a) Electrical energy	(b) Magnetic energy	(c)	Both (a) and (b)	(d) None	e of these			
21.	Heat radiations propagate	with the speed of				[AN	IU 2000]		
	(a) α -rays	(b) β -rays	(c)	Light waves	(d) Sour	id waves			
22.	If a source is transmir electromagnetic waves tra	tting electromagnetic wave insmitted from the source will	of be	frequency $8.2 \times 10^{\circ} Hz$,	then w	vavelength [DP]	of the MT 1999]		
	(a) 36.6 m	(b) 40.5 <i>m</i>	(c)	42.3 m	(d) 50.9	m			
23.	In an apparatus, the elect oscillating magnetic field	tric field was found to oscilla will be	te w	rith an amplitude of 18	<i>V/m</i> . The	e magnituc [Pb. Pl]	le of the MT 1999]		
	(a) $4 \times 10^{-6} T$	(b) $6 \times 10^{-8} T$	(c)	$9 \times 10^{-9} T$	(d) 11×1	$0^{-11} T$			
24.	According to Maxwell's hy	pothesis, a changing electric f	ield	gives rise to		[AII	MS 1998]		
	(a) An e.m.f.	(b) Electric current	(c)	Magnetic field	(d) Pres	sure radiar	nt		
25.	In an electromagnetic wa	ve, the electric and magnetis	ing	fields are $100 V m^{-1}$ and	d 0.265 Ar	n^{-1} . The m	naximum		
	energy flow is								
						[Pb. PMT	1997, 98]		
	(a) $26.5 W / m^2$	(b) $36.5 W / m^2$	(c)	$46.7 W / m^2$	(d) 765 V	W/m^2			
26.	The 21 <i>cm</i> radio wave em interaction is atomic hydr	itted by hydrogen in interstel ogen. the energy of the emitte	llar d wa	space is due to the inte ave is nearly	raction c	alled the h [CBSE P	yperfine MT 1998]		
	(a) 10^{-17} Joule	(b) 1 Joule	(c)	7×10^{-8} Joule	(d) 10^{-24}	Joule			
27.	TV waves have a waveleng	gth range of 1-10 <i>meter</i> . Their	freq	uency range in <i>MHz</i> is		[KC	ET 1998]		
	(a) 30-300	(b) 3-30	(c)	300-3000	(d) 3-30	00			
28.	The velocity of all radio wa	aves in free space is $3 \times 10^8 m$ /	s.Tł	ne frequency of a radio v	vave of wa	avelength 1	.50 m, is [CP I		
	(a) 45 <i>MHz</i>	(b) 2 <i>MHz</i>	(c)	2. KHz	(d) 20 K	Hz.			
29.	Maxwell's equations descr	tibe the fundamental laws of	(0)		(4) 20 11	 [CP]	MT 1996]		
	(a) Electricity only	(b) Magnetism only	(c)	Mechanics only	(d) Both	(a) and (b))		
30.	An electric charge moving	with a uniform velocity has		j		[CBSE P	, MT 1996]		
-	(a) Only an electric field a around it	around it		(b)	Only a	magneti	c field		
	(c) Both electric and mag around it	netic field around it	(d)	Neither an electric f	ïeld nor	a magne	tic field		
31.	Which of the following ray	ys has minimum frequency				[CBSE P	MT 1995]		
	(a) U.V. ravs	(b) X-rays	(c)	Microwaves	(d) Infra	ared ravs			
22	Which one of the following	g electromagnetic radiations h		the smallest wavelengt	h	CRSF D	MT 1004]		
.۔ر	(a) Illtraviolat waves	(b) V move	(~)	w nous	(d) M:				
	(a) Ultraviolet waves	(0) A-1ays	(0)	y-1 ay 5	(u) where	owaves			

CLICK HERE

www.studentbro.in

Get More Learning Materials Here : 💻

Electromagnetic Waves 173 The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along 33. [CBSE PMT 1994] (a) The same direction but differ in phase by 90° (b) The same direction and are in phase (c) Mutually perpendicular directions and are in phase (d) Mutually perpendicular directions and differ in phase by 90° Energy of E.M. waves is due to their [AFMC 1994] 34. (a) Wavelength (b) Frequency (c) Electric and magnetic field (d) None of these In which one of the following regions of the electromagnetic spectrum will the vibrational motion of molecules 35. give rise to absorption [SCRA 1994] (a) Ultraviolet (b) Microwaves (c) Infrared (d) Radio waves 36. An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would generate such a wave [CBSE PMT 1994] (a) $E_{\rm r}, B_{\rm v}$ (b) E_{y}, B_{y} (c) E_{z}, B_{y} (d) E_{y}, B_{z} Which of the following rays has the maximum frequency 37. [CBSE PMT 1994] (a) Gamma rays (b) Blue light (c) Infrared rays (d) Ultraviolet rays 38. Radio waves of constant amplitude can be generated with [CPMT 1993] (a) FET (b) Filter (c) Rectifier (d) Oscillator A signal emitted by an antenna from a certain point can be received at another point of the surface in the form 39. of [CPMT 1993] (b) Ground wave (c) Sea wave (d) Both (a) and (b) (a) Sky wave 40. Speed *c* of E.M. waves through vacuum is given by [CBSE PMT 1993] (c) $c = \sqrt{\frac{\mu_0}{\epsilon_0}}$ (d) $c = \sqrt{\frac{\varepsilon_0}{\mu_0}}$ (b) $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ (a) $c = \sqrt{\mu_0 \varepsilon_0}$ 41. Approximate height of ozone layer above the ground is [CBSE PMT 1991] (a) 60 to 70 km (b) 59 km to 80 km (c) 70 km to 100 km (d) 100 km to 200 km The electromagnetic waves do not transport [Pb. CET 1991] 42. (a) Energy (b) Charge (c) Momentum (d) Information An electromagnetic radiation of wavelength λ and frequency ν propagating in air with velocity c, is incident on 43. a glass plate and is transmitted through. Which of the following statements is true for the wave inside the glass [NCERT 1983] plate (a) The velocity of wave remains c but wavelength changes (b) The frequency v and wavelength λ remain unchanged but the velocity changes (c) The wavelength λ remain unchanged but frequency changes (d) The frequency *v* remains unchanged but the wavelength changes An electric charge oscillating with a frequency of 1 kilo cycles/second can radiate electromagnetic waves of 44. wavelength (a) 100 km (b) 200 km (c) 300 km (d) 400 km If a free electron is placed in the path of a plane electromagnetic wave, it will start moving along 45. (a) Centre of earth (b) Equator of earth (c) Magnetic field (d) Electric field 46. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then (b) $p \neq 0, E \neq 0$ (c) $p \neq 0, E = 0$ (a) p = 0, E = 0(d) $p = 0, E \neq 0$ An electric field \overline{E} and magnetic field \overline{B} exist in a region. If these fields are not perpendicular to each other, 47. then the electromagnetic wave (a) Will not pass through the region (b) Will pass through region Nothing is definite (c) May pass through the region (d)

CLICK HERE

Get More Learning Materials Here : 💶

174 Electromagnetic Waves

48.	Which of the following ha	s zero average value in a plan	e electromagnetic wave							
	(a) Kinetic energy	(b) Magnetic field	(c) Electric field	(d) Both (b) and (c)						
49.	In a plane E.M. wave, th	ne electric field oscillates si	nusoidal at a frequency of	2.0×10^{10} Hz and amplitude						
	$48 V m^{-1}$. The wavelength	of the wave is								
	(a) $24 \times 10^{-10} m$	(b) $1.5 \times 10^{-2} m$	(c) $4.16 \times 10^8 m$	(d) $3 \times 10^8 m$						
50.	Beyond which frequency, towards the earth	the ionosphere bends any inci	ident electromagnetic radiat	ion but do not reflect it back						
	(a) 50 <i>MHz</i>	(b) 40 <i>MHz</i>	(c) 30 <i>MHz</i>	(d) 20 <i>MHz</i>						
51.	Radio waves with frequen	cies higher than television sig	gnals are							
	(a) Ultrasonic waves	(b) Sound waves	(c) Light waves	(d) Microwaves						
52.	Radio waves do not peneti	rate in the band of								
	(a) Ionosphere(b) Mesosphere(c) Troposphere(d) Stratosphere									
53.	A radar sends the waves to	owards a distant object and re	eceives the signal reflected t	by object. These waves are						
	(a) Sound waves	(b) Light waves	(c) Radio waves	(d) Microwaves						
54.	In electromagnetic wave,	the average energy density is	associated to							
	(a) Electric field only	nd meen stie Gelde	(b) Magnetic field only							
	(c) Equally with electric a	a mean and reflected heals to	(d) Average energy densit	y is zero						
55.	the moon is 384000 km fr	om earth, how long does it ta	ke the light to make the rou	nd trip						
-0	(a) 5 minutes	(b) 2.5 minutes	(c) $2.5 s$	(d) 500 s						
50.	An electromagnetic wave,	, going through vacuum is de	Escribed by $E = E_0 \sin(kx - \omega t)$). Which of the following is						
	independent of wavelengt	n (h)								
	(a) K	(D) ω	(c) K/ω	(d) $K\omega$						
57.	(a) Zono fracuonau	sman vorume through which	(b) One fourth frequency	of wave						
	(a) Zero frequency	fwave	(d)	Double frequency of wave						
58	(P-151) An electromagnet	ic wave going through vacu	(u) im is described by $E - E$ s	$\sin(kr - \omega t)$: $B = B \sin(kr - \omega t)$						
50.	Which of the following equation is true									
	(a) $F_{-}k = B_{-}\omega$	(b) $F_{-}\omega = B_{-}k$	(c) $F_{-}B_{-} = ak$	(d) None of these						
50	An LC resonant circuit cor	$z_0 = z_0 = z_0$	200μ inductor It is set	into oscillation coupled to an						
59.	antenna. The wavelength	of the radiated electromagnet	ic waves is							
6.0	(a) 377 mm	(b) 377 metre	(c) 377 cm	(d) 3.77 cm						
60.	is		to a 1 cm absorber. The for	ree due to radiation pressure						
	(a) $3.3 \times 10^{-4} N$	(b) $16.5 \times 10^{-7} N$	(c) $3.3 \times 10^{-6} N$	(d) $3.3 \times 10^{-7} N$						
61.	Waves used for telecomm	inication are								
_	(a) Visible light	(b) Infrared	(c) Ultraviolet	(d) Microwaves						
62.	To double the covering rai	nge of a TV transmitter tower	, its height should be made							
	(a) Two times	(b) Four times	(c) $\sqrt{2}$ times	(d) 8 times						
63.	A radio receiver antenna	that is $2 m \log is$ oriented	d along the direction of the	e electromagnetic wave and						
	ends of the antenna is	sity $5 \times 10^{-10} W/m^2$. The maxi	mum instantaneous potenti	al difference across the two						
	(a) 1.23 μV	(b) 1.23 <i>mV</i>	(c) 1.23 V	(d) 12.3 <i>mV</i>						
64.	The transmitting antenna the peak electric field is 1	of a radio-station is mounted 0 ⁻³ <i>volt/metre</i> . The magnitud	vertically. At a point 10 <i>km</i> e of the radiation magnetic	due north of the transmitter field is						
	(a) 3.33×10^{-10} Tesla	(b) 3.33×10^{-12} Tesla	(c) 10^{-3} Tesla	(d) 3×10^5 Tesla						
65.	Tick the correct statement	<u>, , , , , , , , , , , , , , , , , , , </u>								
	(a) E.M. radiations act as	waves when they move place	to place							
	(b) E.M. radiations behave	e as photons when interacting	, with material substances							
		-								

CLICK HERE

Regional www.studentbro.in

Get More Learning Materials Here : 💻

(c) The main factor which makes the microwave range unsuitable for vision is associated with corpuscular nature of e.m. radiation

(d) All of the above

66. Television signals broadcast from the moon can be received on the earth while the TV broadcast from Delhi cannot be received at places about 100 km distant from Delhi. This is because

- (a) There is no atmosphere around the moon
- (b) Of strong gravity effect on TV signals
- (c) TV signals travel straight and cannot follow the curvature of the earth
- (d) There is atmosphere around the earth
- **67.** An *LC* current contains inductance $L = 1 \mu H$ and capacitance $C = 0.01 \mu F$. The wavelength of electromagnetic wave generated is nearly
 - (a) 0.5 m (b) 5 m (c) 188 m (d) 30 m

68. The ratio of electric field vector *E* and magnetic field vector *H i.e.*, $\left(\frac{E}{H}\right)$ has the dimensions of

- (a) Resistance
- (c) Capacitance
- **69.** The frequency modulated waves are
- (a) Reflected by atmosphere (b) Absorbed by atmosphere (c) Bend by atmosphere (d) **70.** A TV tower has a height of 100 *m*. The average population density around the tower is 1000 per km^2 . The radius of the earth is $6.4 \times 10^6 m$. the population covered by the tower is

(b) Inductance

(d) Product of inductance and capacitance

- (a) 2×10^{6} (b) 3×10^{6} (c) 4×10^{6} (d) 6×10^{6}
- **71.** The ionosphere
 - (a) Reflects back radio waves in the AM band (b) Reflects back radio waves in the FM band
 - (c) Absorbs radio waves in the AM band (d) Absorbs radio waves in the FM band

72. The wavelength 21 *cm* emitted by atomic hydrogen in interstellar space belongs to

- (a) Radio waves (b) Infrared waves (c) Microwaves (d) γ -rays
 - Electromagnetic waves

Advance Level

73. A parallel plate capacitor of plate separation 2 mm is connected in an electric circuit having source voltage 400 V. if the plate area is 60 cm^2 , then the value of displacement current for 10^{-6} sec will be

(a) 1.062 amp (b) $1.062 \times 10^{-2} \text{ amp}$ (c) $1.062 \times 10^{-3} \text{ amp}$ (d) $1.062 \times 10^{-4} \text{ amp}$ A long straight wire of resistance *R*, radius *a* and length *l* carries a constant current *I*. The Poynting

74. A long straight wire of resistance *R*, radius *a* and length *l* carries a constant current *I*. The Poynting vector for the wire will be

(a) $\frac{IR}{2\pi al}$ (b) $\frac{IR^2}{al}$ (c) $\frac{I^2R}{al}$ (d) $\frac{I^2R}{2\pi al}$

75. In an electromagnetic wave, the amplitude of electric field is 1 V/m. the frequency of wave is $5 \times 10^{14} Hz$. The wave is propagating along *z*-axis. The average energy density of electric field, in *Joule/m*³, will be

(a)
$$1.1 \times 10^{-11}$$
 (b) 2.2×10^{-12} (c) 3.3×10^{-13}

76. To establish an instantaneous displacement current of 2*A* in the space between two parallel plates of $1\mu F$ capacitor, the potential difference across the capacitor plates will have to be changed at the rate of

- (a) $4 \times 10^4 V/s$ (b) $4 \times 10^6 V/s$ (c) $2 \times 10^4 V/s$ (d) $2 \times 10^6 V/s$
- 77. A laser beam can be focussed on an area equal to the square of its wavelength *A He-Ne* laser radiates energy at the rate of 1*mW* and its wavelength is 632.8 *nm*. The intensity of focussed beam will be
 - (a) $1.5 \times 10^{13} W/m^2$ (b) $2.5 \times 10^9 W/m^2$
- (c) $3.5 \times 10^{17} W/m^2$ (d) N

(d) None of these

(d) 4.4×10^{-14}

176 Electromagnetic Waves

78.

	(a) $1.85 \times 10^{-15} T$	(b) $1.85 \times 10^{-16} T$	(c) $1.85 \times 10^{-17} T$	(d) $1.85 \times 10^{-18} T$							
7 9 .	A lamp emits monochromatic green light uniformly in an directions. The lamp is 3% efficient in convertine electrical power to electromagnetic waves and consumes $100W$ of power. The amplitude of the electric field associated with the electromagnetic radiation at a distance of $10m$ from the lamp will be										
	(a) 1.34 <i>V/m</i>	(b) 2.68 <i>V/m</i>	(c) 5.36 V/m	(d) 9.37 V/m							
80.	A point source of electro electric field at a distance	magnetic radiation has an av 2 4.0 <i>m</i> from the source is	verage power output of 800	0 W. The maximum value of							
	(a) 64.7 <i>V/m</i>	(b) 57.8 <i>V/m</i>	(c) 56.72 <i>V/m</i>	(d) 54.77 V/m							
81.	. A lamp radiates power P_0 uniformly in all directions, the magnitude of electric field strength E_0 at a di										
	from it is										
	(a) $E_0 = \frac{P_0}{2\pi\varepsilon_0 cr^2}$	(b) $E_0 = \sqrt{\frac{P_0}{2\pi\varepsilon_0 cr^2}}$	(c) $E_0 = \sqrt{\frac{P_0}{4\pi\varepsilon_0 cr^2}}$	(d) $E_0 = \sqrt{\frac{P_0}{8\pi\varepsilon_0 cr}}$							
82.	The wave impedance of fr	ee space is									
	(a) Zero	(b) 376.6 Ω	(c) 33.66 Ω	(d) 3.76 Ω							
83.	• The transmitting antenna of a radio-station is mounted vertically. At a point 10 km due north of the transm										
	the peak electric field is 1	$0^{-3} Vm^{-1}$. The magnitude of the	e radiated magnetic field is								
	(a) $3.33 \times 10^{-10} T$	(b) $3.33 \times 10^{-12} T$	(c) $10^{-3} T$	(d) $3 \times 10^5 T$							
84.	• A wave is propagating in a medium of electric dielectric constant 2 and relative magnetic permeability 50. The wave impedance of such a medium is										

An electric field of 300 V/m is confined to a circular area 10 cm in diameter. If the field is increasing at the rate

of 20 V/m-s, the magnitude of magnetic field at a point 15cm from the centre of the circle will be

(a) 5Ω (b) 376.6Ω (c) 1883Ω (d) 3776Ω

Get More Learning Materials Here : 📕

Answer Sheet

Assignments																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	a	a	a	с	a	b	b	d	b	d	a	с	a	d	с	b	a	a	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	a	b	с	a	d	a	b	d	с	с	С	с	С	b	a	a	d	d	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	Ъ	d	с	d	b	с	d	b	b	c, d	a	d	С	с	с	d	a	b,d	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	a	b	d	с	с	a	с	с	a	a	d	d	b	d	b	d	a	d
81	82	83	84																
b	b	b	с																

Get More Learning Materials Here : 💻

